An Approach to Extract Product Features from Chinese Consumer Reviews and Establish Product Feature Structure Tree
نویسندگان
چکیده
With the progress of e-commerce and web technology, a large volume of consumer reviews for products are generated from time to time, which contain rich information regarding consumer requirements and preferences. Although China has the largest e-commerce market in the world, but few of researchers investigated how to extract product feature from Chinese consumer reviews effectively, not to analyze the relations among product features which are very significant to implement comprehensive applications. In this research, a framework is proposed to extract product features from Chinese consumer reviews and construct product feature structure tree. Through three filtering algorithms and two-stage optimizing word segmantation process, phrases are identified from consumer reviews. And the expanded rule template, which consists of elements: phrase, POS, dependency relation, governing word, and opinion, is constructed to train the model of conditional random filed (CRF). Then the product features are extracted based on CRF. Besides, two index are defined to describe product feature quantitatively such as frequency and sentiment score. Based on these, product feature structure tree is established through a potential parent node searching process. Furthermore, categories of extensive experiments are conducted based on 5,806 experimental corpuses from taobao.com, suning.com, and zhongguancun.com. The results from these experiments provide evidences to guide product feature extraction process. Finally, an application of analyzing the influences among product features is conducted based on product feature structure tree. It provides valuable management connotations for designer, manufacturer, or retailer. China Jiliang University E-mail: {lionkingxxs, linjing, xiaoying, yujianzhe}@cjlu.edu.cn The author for Correspondence is Xinsheng Xu. 54 Xinsheng Xu et al.
منابع مشابه
An Lda and Synonym Lexicon Based Approach to Product Feature Extraction from Online Consumer Product Reviews
Consumers are increasingly relying on other consumers’ online reviews of features and quality of products while making their purchase decisions. However, the rapid growth of online consumer product reviews makes browsing a large number of reviews and identifying information of interest time consuming and cognitively demanding. Although there has been extensive research on text review mining to ...
متن کاملA Context-Dependent Sentiment Analysis of Online Product Reviews based on Dependency Relationships
Consumers often view online consumer product review as a main channel for obtaining product quality information. Existing studies on product review sentiment analysis usually focus on identifying sentiments of individual reviews as a whole, which may not be effective and helpful for consumers when purchase decisions depend on specific features of products. This study proposes a new feature-leve...
متن کاملA Chinese Product Feature Extraction Method Based on KNN Algorithm
The product feature set of online reviews obtained by the current product feature extraction methods has a low coverage rate of review information. In order to solve this problem, this paper proposes a method of product feature extraction based on KNN algorithm. We establish the classification system of product feature set firstly. Then we extract part of product features as training set manual...
متن کاملDeriving the Pricing Power of Product Features by Mining Consumer Reviews
The increasing pervasiveness of the Internet has dramatically changed the way that consumers shop for goods. Consumer-generated product reviews have become a valuable source of information for customers, who read the reviews and decide whether to buy the product based on the information provided. In this paper, we use techniques that decompose the reviews into segments that evaluate the individ...
متن کاملMining, Identifying and Summarizing Features from Web Opinion Sources in Customer Reviews
Today World Wide Web is an brilliant source for gathering consumer, customer opinions there is an tremendous growth in user generated contents in the form of customer reviews on the Web containing precious information useful for both customers and manufacturers. Today there are various Web sites containing such opinions, e.g., consumer reviews of products, forums and blogs. However, lots of stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJCLCLP
دوره 22 شماره
صفحات -
تاریخ انتشار 2017